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INFORMATION DYNAMICS VIEW OF BRAIN PROCESSING FUNCTION

C.J. James and D. Lowe

Neural Computing Research Group, Aston University, Birmingham, United Kingdom

Abstract- We present a methodology for the analysis of
electromagnetic (EM) brain signals. In a dynamical systems
framework we assume that the measured
electroencephalogram (EEG) and the magnetoencephalogram
(MEG) are generated by the non-linear interaction of a few
degrees of freedom. Within this framework, we then construct
an embedding matrix, which consists of a series of consecutive
delay vectors. The embedding matrix describes a trajectory on
the Euclidean manifold recreating the unobservable system
manifold, which is assumed to be generating the measured
data. The embedding matrix can be used to quantify system
complexity, which changes with the changes in brain-‘state’.
To this end, we use measures of entropy and Fisher’s
information measure to track changes in complexity of the
system over time. It is also possible to perform Independent
Component Analysis on the embedding matrix to decompose
the single channel recording into a set of underlying
independent components. The independent components are
treated as a convenient expansion basis and subjective methods
are used to identify components of interest relevant to the
application at hand. The method is applied to just single
channels of both EEG and MEG recordings and is shown to
give intuitive and meaningful results in a neurophysiological
setting.

Keywords — EEG, MEG, dynamical systems, complexity, ICA,
single channel analysis

I. INTRODUCTION

e describe a methodology whereby it is possible
\}\/ to analyse the electromagnetic (EM) fields of the
brain as they vary with time. Both
electroencephalographic (EEG) and magnetoencephalo-
graphic (MEG) recordings of brain function allow the
opportunity to view brain function at the millisecond level.
Neurophysiological interpretation of the EM brain signal
recordings is usually restricted to the observation of the
absence/presence of ‘rhythms’ of particular frequencies, or
of specific wave morphologies. As the brain-‘state’ is ever
changing (e.g., awake and alert as opposed to asleep) then
the observation of the above signals is never a
straightforward operation. Further compounding the issue is
the presence of artifacts, of both a physiological origin or
otherwise. Artifacts tend to obscure or mimic brain function
of interest as this is usually contributing only a fraction of
the percentage of the overall power of the measured signal.

The viewpoint we hold makes the assumption that
underlying sufficiently short segments of the measured EM
brain signals is a system of a few degrees of freedom which
are nonlinearly mixed. These sources would then describe
the brain-‘state’ over the short period of time in question
(usually around the order of 1s). We then endeavor to

extract information about this underlying system which we
relate to a neurophysiological model.

II. THE DYNAMICAL SYSTEMS VIEW

EM brain signals in the form of EEG and MEG are
usually recorded with very good temporal resolution and, in
the latter case, with very good spatial resolution. A
dynamical systems approach allows the viewpoint outlined
in the previous section and is particularly applicable to
analysis of the temporal dynamics of EM brain signals,
although not necessarily restricted to the temporal case.
Given a sampled time series, within a dynamical systems
viewpoint we attempt to uncover as much information as
possible about the underlying generators based only on the
measured data [1], this is done through a technique known
as dynamical embedding (DE). The assumption that the
measured signal is due to the nonlinear interaction of just a
few degrees of freedom, with additive noise, suggests the
existence of an unobservable deterministic generator of the
observed data. If the number of degrees of freedom of the
underlying system is given by D, then D can be used as a
coarse measure of the system complexity. Takens’ [2]
theorem allows the reconstruction of the unknown
dynamical system that generated the measured time series
by reconstructing a new state space based on successive
observations of the time series.

A DE matrix is constructed from a series of delay
vectors taken from the observed data x(¢), say, where the
state of the unobservable system at time ¢, X(¢), is given by

X(@) = {x(t—r),x(t—Zz’),...,x(t—(m—l)r)}e R, (1)

where 7 is the lag and m is the number of lags or the
embedding dimension. This delay vector describes
observations of the underlying system states, assuming that
the data, x(¢), ¢=1,2,...,.N, are generated by a finite
dimensional, nonlinear system of the form

x(t)= f[x(-1).x(t=2),....xX(t-D)]+e,, 2)

where x(f) is real valued, and e, is independently and
identically distributed, and zero mean with unit variance.

Takens showed that the Euclidean embedding
dimension 7 must be at least as large as D, but in practice
must be such that,

m>2D+1. (3)
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When applied to real world data the delay vector size m
actually used needs to be a lot larger than the Euclidean
embedding dimension (7 ) because of dependencies in the
time series data and inherent noise in the system. m needs to
be ‘big enough’ to capture the information content necessary
and if the time series data is heavily correlated, then more
time series samples are needed to make up the required
information content of the delay vector. Once the optimal
delay vector size is found, an embedding matrix is
constructed out of a number of consecutive delay vectors.
The number of delay vectors V, is determined by the length
of the signal to be analysed but in practice must be at least
as large as m. Hence the embedding matrix consists of a
series of delay vectors such that

Xt Xtz Xi+Ne
X = xt.+‘r xli:ZT XH(].\/H)T )
xt+(m—l)r xt+(m)‘r xt+(m+N—1)‘r

Provided the sampling rate of the acquired data is
chosen sensibly, then the practical minimum size for m can
be chosen based on the lowest frequency of interest and the
lag rcan be set to 1, i.e.,

Js

m2-—, =1, )
L
where f denotes an

appropriate sampling frequency,

and f, the lowest frequency of interest in the measured

signal. For the EM brain signals described here, we derived
values for m and 7 in this manner, and over a diverse set of
neurophysiological test signals, the choice of m =90 and
7 =1 proved optimal. If the choice of lag term 7, delay
vector size m and number of lag vectors N is adequate, the
embedding matrix is now rich in information about the
temporal structure of the measured data. If N is set such that
the embedding matrix covers a quasi-stationary signal, it
becomes possible to extract an estimate for the unobserved
degrees of freedom D.

In effect, each column of the embedding matrix
represents a point on the manifold of the Euclidean
embedding and together all the columns of the embedding
matrix trace a trajectory over this manifold. Fig.1. gives a
diagrammatical representation of the embedding process and
what it represents in terms of the EM brain signals.

A. Complexity Analysis

Once the embedding matrix is constructed it is possible
to get an estimate of the system complexity. To do this we
obtain a signal/noise subspace decomposition through the
use of singular value decomposition. In this way,
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Fig. 1. The dynamical systems view of the genera tion of EM brain
signals: (1). The recorded EM brain signals are assumed to be generated
by a non-linear system with a few degrees of freedom. (2). Sources
generate data that lies on an unobservable system manifold U of
dimension D. (3). Data from a single measurement channel constitutes
the measurement space from which consecutive delay vectors are
extracted. (4). Delay vectors form an embedding matrix M that traces a
trajectory on the manifold generated by the Euclidean embedding.

X=USV’, (6)

where U and V are orthogonal and S is a diagonal matrix of
singular values known as the singular spectrum (the
eigenvalues of XX"). The singular spectrum describes the
signal and noise structure of the measured data. If the
embedding is repeated over a number of consecutive
windows of the data, then the change in structure of the
singular spectrum can be observed — this is closely linked to
the relative complexity of the underlying generators. Fig. 2.
shows the singular spectra of embedding matrices derived
from a single channel of seizure EEG data. There is a
noticeable change in structure of the singular spectrum as
the EEG becomes more rhythmic due to the onset of seizure
activity. For a signal of low complexity the first few
singular values will be large compared to the rest and for a
signal of higher complexity more than a few of the singular



values will have large values. It is required to quantify this
change in structure and this can be done by calculating a
measure of entropy for each consecutive singular spectrum
[3]. For the singular spectrum S which is made up of
components s;, i=1,2,...,N, along the diagonal, the singular
values are first normalized such that

§;=s; Zsj , (7

and the entropy is defined as,
H==)"5logs (8)
=

In practice the measure of entropy is heavily influenced by,
and closely reflects, the power of the signal under analysis.
Entropy is also not influenced by the shape of the singular
spectrum, and as it is apparent that the shape of the spectra
characterizes the system we have obtained another measure
for tracking the changes in singular spectrum complexity
using Fisher’s information measure [4]. This measure
highlights the changes in gradient of the singular spectrum.
Fisher’s information measure is defined as the information
about a point #1in a sample of # independent observations

I (0)=E [MT , ©)

o0

where P(6) is the likelihood of the sample. We can then
derive the discrete version of the Fisher measure as

ln(9)=iM, (10)

P,

& p0)

where P.(0)=3,

B. Component Analysis

It is also possible to span the trajectory over the
manifold in the Euclidean space (i.e., the embedding matrix)
with an appropriate basis. This is done in an attempt to
characterise the underlying sources in the embedding
matrix. In our case we choose to use ICA, although it is in
fact possible to span the embedding matrix with any basis,
such as Principle Component Analysis for example. We
have shown in previous work [5], however, that the use of
such an orthogonal spanning set as a means of identifying
underlying components in EM brain signal data is inferior to
ICA. ICA performs a blind separation of statistically
independent sources, assuming linear mixing of the sources
at the sensors, generally using techniques involving higher-
order statistics. Several different implementations of ICA
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Fig. 2. Complexity analysis of EM brain signals in a dynamical
systems framework. T3 represents a 20 s segment of seizure EEG
over left temporal lobe. Consecutive singular spectra obtained from
embedding matrices show change in structure coinciding with seizure
onset. Both measures of entropy and Fisher information can be use to
quantify the change in structure.

can be found in the literature; [6],[7],[8],[9] and [10]. As
this paper is not meant as an overview of the various ICA
algorithms, we will restrict ourselves to the use of the Fast
ICA algorithm, [9] and [12], mainly because of its ease of
implementation and speed of operation. Further details
about the other algorithms can be obtained from the given
references.

Once a spanning set is determined the independent
components (ICs) of interest must be identified and this is
by no means a trivial task. The nature of the square mixing
matrix means that a great many more sources will be
identified over the expected (smaller) number of sources
underlying a measurement set. In the case of the embedding
matrix of embedding dimension m (m =90 in our case)
there will be a total of m ICs — whereas it is generally
assumed that the number of underlying sources of interest
should number much less than that. For the moment we use
subjective means of choosing relevant ICs based on our
expectations of the underlying sources in terms of signal
morphology and frequency rhythms of interest.

II1. DISCUSSION

In this section we introduce some typical results
obtained on applying the methods to various EM brain
signals acquired under different conditions from both EEG
and MEG recording modalities.



Fig. 2. depicts a 20 s segment of EEG recorded from of
the left temporal lobe (T3) of an epileptic patient. It depicts
a seizure onset at roughly 7-8s which is characterized by the
rhythmic activity. A series of embedding matrices were
constructed using the parameters as described in this paper
and the consecutive singular spectra were plotted. It can be
seen that on and around the seizure onset there is a marked
change in the structure of the singular spectra. This change
in structure is captured by the two measures of complexity
described within this paper.

Fig. 3. depicts ICA on an embedding matrix extracted
from a 20 s segment of MEG data recorded from a healthy
volunteer from channel MLT16 — over the left posterior side
of the temporal lobe. A number of ICs are selected after
ICA is performed on the embedding matrix. In particular,
IC1 represents SO0Hz contamination, IC2 ocular artifact and
IC3 alpha activity. For each IC it is also possible to project
the topography of the IC as a minimum norm solution given
the entire multichannel MEG recordings.

Overall, the viewpoint we hold regarding the underlying
sources generating measured signals is not unreasonable and
dynamical systems analysis allows us to explore this very
well. The use of DE has been shown to yield meaningful
results when applied to various sets of recorded EM brain
activity. The results obtained are intuitive, and although
subjective (as in the case of IC identification), make sense in
a neurophysiological framework.

IV. CONCLUSION

Although this is ongoing work, the results to date
indicate a methodology that is both easy to implement and
intuitive. The extraction of measures of complexity through
dynamical embedding has many practical applications in
neurophysiology that will be explored further.  The
technique of characterizing the embedding matrix with ICA
has yielded very exciting results, extracting information that
is not apparent in the strongly contaminated EM brain signal
recordings. Finally, although the method yields significant
results in just single channel analysis, which is desirable in
many situations, it is not necessarily confined to single
channel analysis and further work will be continued in the
application of a dynamical embedding framework for
multichannel analysis.
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